Characterization methods for carbon materials

Norlab offers a whole range of testing instruments for carbon materials such as wood, coal, graphite, graphene and carbon black.

For powdery carbon materials, the particle size distribution plays a key role for the characterization, while for granulated samples, the meso- and macropores are often the focus of attention.

Investigation of micropores are relevant for both powdery and granulated samples, since the micropores usually exhibit a major part of the specific surface area, and most of the exchange and sorption processes take place there.

See also <u>Characterization methods for MOFs and other synthetic, highly porous materials</u> and <u>Characterization methods for technical adsorbents, including zeolites and activated carbons</u>. Wood, coal, graphite and carbon blacks mostly possess moderate specific surfaces, which are used for other applications.

Specifically carbon blacks, used as fillers for car tires, have led to a special parameter, the so-called STSA surface area, which is measured by gas adsorption and requires a BET analyzer.

Parameter	Method	Instrument
BET surface area and pore analysis	Gas adsorption	3P micro series 3P meso series 3P sync series 3P surface DX
Density	Gas pycnometry	<u>3P densi 100</u>
Dispersion stability	Analysis of the transmission and backscattering behaviour	MultiScan MS 20 dispersion stability analysis system
Particle dispersibility studies	Non-invasive NMR liquid relaxation technology	MagnoMeter XRS
Particle shape	<u>Image analysis</u>	BeVision D2 Bettersizer S3 Plus
Particle size, concentrated dispersions	Acoustic spectrometry	DT-1202 DT-100
Particle size, nanometer range	Dynamic light scattering	BeNano series
Particle size, powders	<u>Laser diffraction</u>	Bettersizer S3 Plus Bettersizer S3 Bettersizer 2600 Bettersizer ST

Parameter	Method	Instrument
Pore volume and size distribution	Mercury intrusion porosimetry	Contract analysis Please ask for a quote
Solids concentration of suspensions	Non-invasive NMR liquid relaxation technology	MagnoMeter XRS
Water uptake and release	Dynamic vapor sorption (DVS)	3P graviSorb series
Wetted surface area of suspensions	Non-invasive NMR liquid relaxation technology	MagnoMeter XRS
Zeta potential, concentrated dispersions	Electroacoustic spectrometry	DT-1202 DT-310 DT-300

