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Metabolomic CSI: High Resolution Lipidomic Profiling of Fingerprints
using TD-SICRIT®-MS and Bioinformatics Pipeline

Introduction

In  forensic science, identifying and differentiating
fingerprints and the chemicals found on them are crucial for
linking individuals to crime scenes, establishing timelines,
and providing evidence in legal proceedings. Each
individual's fingerprint carries a unique chemical sighature
derived from sweat, oils, and residues from substances
touched, making it a valuable tool for forensic
investigations. Discriminating between different fingerprints
and their chemical compositions aids in identifying
suspects, excluding innocent  individuals, and
reconstructing events. Rapid identification of these
chemical constituents enhances the efficiency and
accuracy of forensic investigations, expediting case
resolution and ensuring justice is served swiftly.

In both metabolomics and lipidomics, distinguishing
between different fingerprints and their chemical profiles is
crucial for understanding an individual's physiological state,
lifestyle, and potential health risks. Metabolites and lipid
classes present in fingerprints reflect metabolic processes,
dietary habits, exposure to environmental toxins, and
underlying health conditions. Rapid identification and
differentiation of these profiles enable researchers to
uncover patterns, correlations, and biomarkers relevant to
health, disease, and drug responses. This knowledge can
inform personalized medicine, disease diagnosis, and
therapeutic interventions, ultimately enhancing patient
outcomes and the delivery of healthcare services.
Additionally, lipidomics focuses on the analysis of lipid
molecules, such as fatty acids, glycerides, and
phospholipids, which are abundant on the skin's surface
and contribute to the unique chemical composition of
fingerprints. Investigating the role of different lipid classes in
fingerprint analysis could provide valuable insights into
individual variations and aid in forensic investigations and
metabolomic research.

Desorption Electrospray lonization Mass Spectrometry
(DES)) is a powerful technique used for rapid fingerprint
analysis in both forensic and metabolomic applications.
DESI allows for direct ionization and detection of chemicals
on a surface without the need for sample preparation.
However, DESI may suffer from ionization limitations and
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disadvantages, including spatial resolution issues, ion
suppression effects, and matrix interference. An additional
limitation is that the main ionization mechanisms that drives
DESI is an ESI-based mechanism. This means that those
components that cannot be softly ionized through these
typical methods, like the more non-polar components, are
simply lost. These limitations can affect the accuracy and
reliability of fingerprint analysis, particularly in complex
samples with overlapping signals or low analyte
concentrations.

Here, we propose an alternative method that expands upon
the limitations and capabilities of DESI, along with a
computational workflow to provide dual analysis for both
targeted and untargeted forensic or metabolomic analysis.
With the SICRIT® lonization Technology, we are able to
ionize a broader range of compounds than the gold
standard method by employing not only an ESI-like
ionization pathway, but also providing APClI-like and Pl-like
routes of ionization, which allows for some of the most non-
polar compounds to be ionized. Furthermore, as shown in
previous applications (Method Mimicry: Metabolomic
Targeted Analysis of 79 pesticides to Study Matrix Effects
and MS2 Library Analysis of the ESI and SICRIT®), we are
able to minimize the matrix effect to the same, if not better,
level than the traditional ESI-LC-MS set-up. This means
that we also have the possibility of being less affected by
matrix effects, while maintaining our high reproducibility and
sensitivity, all of which are necessary for this type of
analysis.

In this study, we aim to expand on the application
presented in a previously published article (Conway, C. et
al. (2023) ‘Rapid desorption and analysis for illicit drugs and
chemical profiling of fingerprints by SICRIT® ion source’,
Drug Testing and Analysis, pp. 1-8. doi; 10.1002/dta.3623).
In that work, an in-house thermal desorption device was
coupled with the ion source (TD-SICRIT®-MS) to provide a
proof-of-concept forensic experiment. Here, we further
explore how this technique can also be applied to
metabolomics analysis.
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Sample Preparation & Analysis Conditions

Polar and triglyceride lipid standards were diluted 1:10 in
methanol, and 5 ulL were pipetted onto glass slides, left to
dry before measurement. The fingerprints were collected
from eight individuals directly onto the glass slides and
stored for up to 1day at 5°C before analysis. Three
replicate fingerprints were collected from each individual's
left and right thumb. Collection of fingerprints was done on
2 days, 4 days apart, resulting in 6 to 12 samples of each
individual.

Samples were desorbed with an in-house built thermal
desorption device at a temperature of 300°C for 30s,
flushed with dry nitrogen at a flow rate of 3 L/min to ensure
a stable and clean background. Slides were manually
introduced with the sample facing the ion source. lonization
of the desorbed sample was carried out by a SICRIT®
ionization source at an amplitude of 1600 V and a frequency
of 15kHz.

Detection and guantification were performed using a high-
resolution LTQ Orbitrap XL mass spectrometer (Thermo
Scientific, San Jose, USA) with specific parameters:
capillary voltage 2.6V; tube lens voltage 70V; capillary
temperature 275°C; mass window 75 to 1200 m/z; micro
scans 1; maximum injection time 250 ms. Automatic gain
control (AGC) was applied. Measurements were performed
in full scan mode with profile-mode acquisition and positive
polarity, employing a resolution of 30,000 (FWHM at
400 m/z).

Lipidomic samples, standards, and fingerprints obtained
from the Thermo-Orbitrap underwent processing through
an R-script and a Python machine learning pipeline. Raw
spectra were centroided, converted to mzML with
MSConvert, and processed with PyOpenMS. Baseline
correction, smoothing, peak detection, and background
subtraction were applied to the extracted MS1 data
averaged over a given retention time window. The cleaned
MS1 peaks were exported as a feature table, with mz
values as columns. To align the spectra across all samples,
a virtual lock mass algorithm merged redundant features
with a 0.01 mz-value window shift, resulting in a reduced
feature table. Features missing from at least 90% of the
samples were dismissed and features not consistently
observed within two-thirds of the triplicate or sextuplicate
samples were considered noise and discarded.

Following an initial PCA to observe sample separation, a
machine-learning pipeline was constructed to find an
optimal model for differentiation (Figure 1).
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Peak Alignment

Virtual Lock Mass Algorithm

Statistical Analysis

Dimension Reducton (PCA) - DAG | Dimension Reduction (PCA) - Sterol | | Dimension Reduction (PCA) - TAG o (23R
Figure 1: The basic spectra processing and analysis part of the
computational pipeline

The data was split 70:30 into a training and test set,
stratified and randomized for sample separation. Due to the
multi-class nature, the data were binarized. The sklearn
Pipeline class applied a series of dimension reduction
methods (PCA, SVD, IsoMap, Locally Linear Embedding)
and classifiers (Random Forest, K-Nearest Neighbor,
Gaussian Process, Naive Bayes, Decision Tree, Voting
Ensemble method) to determine the best model
combination. Constructed pipelines underwent Leave-
One-Out cross-validation grid search to identify the optimal
classifier model for each combination based on validation
accuracy.

Machine Learning Model Pipeline

Outlier Analysis
PCA LOF
Feature Analysis

ANOVA Random Forest

I Gradient Boost

Model Training & Testing

Final Model Biomarker Detection
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Figure 2: The machine learning model pipeline, coupled with the
preliminary biomarker matching tool
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Additionally, these features collected were run through a
preliminary biomarker detecting pipeline, where the mass
range defect was set to 0.01 mz for a match.

Results from Analysis of Standard Samples

The initial results that we wanted to obtain from such
measurements pertained to the behavior of the desorption
device and how well it handled both polar and nonpolar lipid
standards, especially since this mass range is at the upper
end of our detection limit and is a region that includes
potential insight for finger differentiation and lipidomic
studies. The list of included compounds and those that
were found can be viewed in a table below, where only
three could not be conclusively identified from the EIC in
positive mode (Table 1). However, with further optimization
and the use of both positive and negative ion mode,
potentially these compounds should be visible with our
source using the desorption device and have been well
documented through LC-SICRIT® -MS (Lipidomics
Decoded: Targeted Assignment of Polar Lipids using the
SICRIT® LC-Module). With these standards we were able
to obtain clean and reproducible MS1 spectra of the
standards, even with the manual nature of the preparation
and doping of the glass slides (Figure 3 & 4).

080117185400, mamL.

Polar Lipids 1:10

2es08.

plashour_300C_dry_L 080117185400, maML

Polar Lipids

B l IH
Sas00. L M| (VT \IL l Loy wll 1 i I |

taglto10_300C dry 1 080117185400 meML

s Non-Polar Lipids

Figure 3: MS1 of one triplicate from each standard run, not
background subtracted, including the additional Polar Lipid standard,
diluted 1:10.
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Figure 4: PCA of the replicates for the Non-Polar Lipids, Polar Lipids,
and Polar Lipids 1:10. Additionally, in the blue, are the blanks of the
glass slide itself to ensure that the reproducibility wasn’t inherently
due to reproducible blanks for any of the standards.

Upon further inspection of the individual compounds and
their ionizations, we found that these compounds ionize
with the identical ionizations found in a previous LC-
SICRIT® -MS application note with these exact compounds
(Lipidomics Decoded: Targeted Assignment of Polar Lipids
using the SICRIT® LC-Module). Additionally, we found that
the device itself provides deviations in retention times
depending on how polar or non-polar the compound is
(Figure 5).

splashpur_300C_dry_ 3 080117185400 mas

‘ TIC - Polar Lipid Standard
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Figure 5: TIC of the Polar Lipid Standard with several “peaks” labelled
to indicate the four compounds and their differentiating desorption
times. The corresponding compounds and EICs can be seen below,
along with the ionization provided.

Once we had concluded that the possibility of lipid
detection, with a wide range of lipid classes, on the glass
slide was possible in a targeted manner, we moved on to a
more untargeted, more complex matrix, fingerprint
residues. In general, we were able to produce a nice array
of fingerprint profiles (Figure 6). Furthermore, we were able
to determine which area of the spectra seemed to conserve
the most information about the unique features for each
person and which part of the spectra is the least conserved.
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Figure 6: MS1 of a single fingerprint desorption

Similar to the outputs of the machine learning models that
are fully described in the paper, we found that overall, the
fingerprints are unique, however, the DAG region appears
to be the most conserved between individuals,
independent of which day or which hand was sampled. This
can be seen in the discussion of the forensic paper.
Whereas the volatile region had the most variety, which
makes sense, since this area is clearly dependent on what
you have been interacting with on a daily basis and can
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even depend on which hand is dominant. This relationship
can be seen in using rather simplistic metrics, such as the
spectra cosine similarity. Here, we were able to determine,
essentially what the more complex algorithms had alluded
to (Figure 7).

VoI | Sterol | DAG | TAG overall
A 363% | 585% 89.1% | 69.5% 64.7%
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Figure 7: Visual comparisons of the fingerprint MS1. Additionally,
several cosine similarity metrics are shown, broken down by each
region and then with the overall similarity score: A. Person 1 — Left
Day 1 vs Left Day 5, B. Person 1 — Left Day 1 vs Left Day 1, C. Person 2
— Left Day 1 vs Right Day 1, D. Person 1 Left vs Person 2 Left
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In this example, the overall similarity metric shows that the
replicate similarity is close to 90%, while the similarity
between the right and left replicates remains above 80%.
The overall similarity does seem to fall between replicates
taken on different days, in this case to about 63% similarity,
which makes sense when looking at the volatile region,
which is the most dissimilar. Finally, there is a reasonable
difference between two different individuals for the same
hand on the same day, even without a machine learning
pipeline, of about 50% similarity. What is the most
interesting about these metrics is for every comparison, the
DAG region is the best at differentiating between hands and
people, but conserves the information between replicates,
even if several days apart (Figure 7).

Once we had established that we can preliminarily
differentiate between fingerprints and look to the lipid-
region for further information, it was time to take a deeper
dive into the MS1 and look at the preliminary biomarker
assignment.

What we generate from this biomarker database search are
the particular features that could be the most interesting to
focus on, filtering out those masses that simply don’t have
the proper mass defect to be a metabolite, and the search
provides an array of potential compound candidates. For
instance, when only looking at 5 main ionizations that come
from the search, we are able to reduce the 57,000 features
down to 330 unique features of interest, with 27,000
potential compound matches. The list of 27,000
compounds is then matched in ClassyFire to the molecular
taxonomy, allowing us to understand the types of
compounds that may be present and if these make sense.
This simple search provides a significant reduction in
feature analysis and the algorithm can be applied to any
database or hand-curated list.
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Figure 8: Density plot for every single unique mass across all samples
that matched to a biomarker with the [M+H]+ ionization displayed by
their Superclass given through ClassyFire

In this case, we further narrowed the search space to only
[M+H]+ ionizations, resulting in 8,000 non-unique
compound matches from 214 unique m/z features. In the
volatile region, we observed a wide range of Superclasses,
while in the DAG and TAG regions, lipid and lipid-like
compounds dominated, along with a few hydrocarbons.
This distribution of compounds passed the “sanity check.”
The more fascinating aspect, in terms of lipidomic analysis,
was the distribution of lipid and lipid-like compounds (Figure
9).
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Figure 9: Density plot for every single unique mass across all samples
that matched to a biomarker in the Lipid and Lipid-like Superclass with
the [M+H]+ ionization displayed by their Lipid Class given through
ClassyFire
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With a total of 6,800 matches to the lipid and lipid-like
superclass out of the total 8,000 matches, this superclass
was by far the majority of hits. This also makes sense, since
most compounds that make-up the oil that coats the skin
are lipids or lipid-like. From the literature there are several
classes of lipids that are of interest when looking at the
residues released from the skin, such as the Fatty Acyls,
the Steroids or Hormone-like Compounds, Glycerolipids,
and the Sphingolipids (including the ceramides). All these
classes were identified within the features matched to the
database, and their distribution across the MS1 mass range
is clearly shown in Figure 9. There were 346 matches to the
Fatty Acyls, 54 matches to steroids, 122 Sphingolipids, and
a large amount of Glycerolipid matches of close to 6,000.
This large number accounts for all the isomers that come
with the DAG and TAG region, and this naturally inflates the
number of matches per m/z value in that range.

With this information, we can begin to analyze the
differences in class distribution between individuals that we
had previously measured. In order to do this, the spectra
for all replicates, for both hands, across both testing days
were averaged for every subject tested, to obtain a lipid
profile for each person. While many of classes were found
in each individual, the differentiation lay in the magnitude of
each compound with the class. This means that even if two
individuals had the same compounds found, those values
would not be the same, in fact, none of the distributions
across any of the individuals are identical (Figure 10).

Figure 10: Distribution of each lipid class, broken out by each subject’s
averaged spectra across all days and both hands combined.
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Furthermore, when analyzing the subclasses within each of
these lipid classes, we are able to focus in on the types of
compounds within the targeted lipid classes that are used
to analyze the skin (Fatty Acyls, Glycerolipids,
Sphingolipids, and Steroids). What we can show is that the
ratios for each of these are unique and allow for unique
profiles to be created for each individual (Figure 11).
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- Conclusion

Overalll, this study shows the capabilities of the TD-SICRIT®
-MS and how they can be utilized in the world of
metabolomics and lipidomics, with the full potential of such
a study being realized through the combination of chemistry
and computation.

Mean Intensity

With such a device and pipeline, you can go beyond the
conventional forensic uses, without imaging or sample prep
or only one main mechanism of ionization or significant

matrix effects. This allows you to extend the range of
rl—ﬂh Trﬂ_‘rﬂ_lﬂ—_ﬂ_lﬂﬁ ionizable metabolites, and in turn, expanding the level of

| features that are possible to visualize, to derive a clear

Subjects chemical profile of a biological matrix, like a fingerprint,

Subclass [_] Diradylglycerols [[] Monoradylglycerols [_] Triradyleglycerols without WOI’T’in’]g about Sample prep destroying valuable

metabolomic information or that the matrix effect will fully

— suppress the desired outcome. Furthermore, you can take

this expansive list of features and with a simple database

pipeline for feature filtering, you can focus in on those
features that have potential biological significance.

In the end, you have a device and computation pipeline that
allows you to sequester all of the polar and non-polar
compounds that allow for exposomic, lipidomic, forensic,
or metabolomic studies, it is an all-in-one prototype that

could allow us to change the way we view biological
matrices and the information that lies within.
dlma

Subjects

Mean Intensity

Subclass |:| Ceramides D Phosphosphingolipids

Figure 11: Ratios of each subject for each subclass pertaining to the
following Lipid Classes (Top to Bottom): Steroids, Fatty Acyls,
Glycerolipids, and Sphingolipids

With these tentative lipid assignments, we can begin to
understand the fuller picture of what these MS1 spectra
contain and how, in the future, these methods could be
used to differentiate fingerprints through the MS1 profile,
while determining which classes of compounds or
compounds themselves contribute to these large
differences, allowing us to elucidate metabolomic patterns
of interest, going beyond the conventional forensic
fingerprint identification.
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Supplementary Information References
Compound Standard Absolute Observed DAG 1. Conway, C., Weber, M., Ferranti, A., Wolf, J., &
2;“’“”” Observed Haisch, C. (2023). Rapid desorption and analysis for
Trilinolenin Non-Polar a5 Yes Yes illicit drugs and chemical profiling of fingerprints by
Standard SICRIT® ion source. Drug Testing and Analysis.
Trilinolein Non-Polar 105 Yes Yes https.//doi.org/10.1002/dta.3623
Standard
Tripalmitin Non-Polar 20 Yes Yes
Standard 2. Djoumbou Feunang, Y., Eisner, R., Knox, C.,
Triolein Non-Polar 305 Yes Yes Chepelev, L., Hastings, J., Owen, G., Fahy, E,
—— ilta"dparld — - - Steinbeck, C., Subramanian, S., Bolton, E., Greiner,
rieteann o e“‘ & R., & Wishart, D. S. (2016). Classyfire: Automated
Trieicosenoin Non-Polar 5 Yes Yes Chemical Classification with a comprehensive,
Standard computable taxonomy. Journal of Cheminformatics,
Trierucin Non-Bolar > Yes ves 8(1). https://doi.org/10.1186/513321-016-0174-y
Triarachidin Non-Polar 5 Yes Yes
Standard
15:0-18:1(d7) Polar 80 Yes N/A
PC Standard
15:0-18:1(d7) Polar 2.5 Yes N/A
PE Standard
15:0-18:1(d7) Polar 3.5 Yes N/A
PA Standard
18:1(d7) LPC Polar 12.5 Yes N/A
Standard
18:1(d7) LPE Polar 2.5 Yes N/A
Standard
18:1(d9) SM Polar 15 Yes N/A
Standard
18:1(d7) Chol Polar 175 Yes N/A
Ester Standard
18:1(d7) MG Polar 1 Yes N/A
Standard
15:0-18:1(d7) Polar 5 Yes N/A
DG Standard
15:0-18:1(d7)- Polar 27.5 Yes Yes
15:0 TG Standard
15:0-18:1(d7) Polar 2.5 No N/A
PS Standard
15:0-18:1(d7) Polar 5 No N/A
PI Standard
15:0-18:1(d7) Polar 15 No N/A
PG Standard

Table 1: Compounds in each standard with their absolute amounts
and if they were found, along with any fragmentation that could occur
in the form of a DAG.
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