# Extraction of a Drugs of Abuse Panel from Oral Fluid Using ISOLUTE® SLE+ After Collection with the Intercept Oral Fluid Drug Test Kit Prior to UPLC-MS/MS Analysis

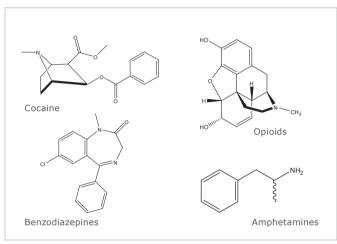



Figure 1. Example structures by class

### Introduction

This application note describes the extraction of 47 drugs of abuse from oral fluid matrix collected using the Intercept Oral Fluid Drug Test Kit (Orasure Technologies), prior to UPLC-MS/MS analysis. **Figure 1** shows examples of these structures by class.

ISOLUTE® SLE+ Supported Liquid Extraction columns offer an efficient alternative to traditional liquid-liquid extraction (LLE) for bioanalytical sample preparation, providing high analyte recoveries, no emulsion formation, and significantly reduced sample preparation.

This application note describes an effective and efficient ISOLUTE SLE+ protocol optimized for the 1 mL capacity column format.

## **Analytes**

Table 1. Analytes

| Amphetamine           | Methamphetamine | MDA             | MDMA                  | MDEA               |
|-----------------------|-----------------|-----------------|-----------------------|--------------------|
| Mephedrone            | Morphine        | Hydromorphone   | Oxymorphone           | Dihydrocodeine     |
| Oxycodone             | Hydrocodone     | Codeine         | 6-MAM                 | Methadone          |
| EDDP                  | Cocaine         | Benzoylecgonine | 7-amino-flunitrazepam | 7-amino-clonazepam |
| Nitrazepam            | Flunitrazepam   | Clonazepam      | α-OH-alprazolam       | a-OH-triazolam     |
| Oxazepam              | Estazolam       | Temazepam       | Alprazolam            | Lorazepam          |
| 2-OH-ethyl-flurazepam | Triazolam       | Nordiazepam     | Diazepam              | Midazolam          |
| Flurazepam            | Bromazepam      | Zaleplone       | Zopiclone             | Zolpidem           |
| Fentanyl              | Norfentanyl     | Ketamine        | Norketamine           | Buprenorphine      |
| Norbuprenorphine      | PCP             |                 |                       |                    |



## Sample Preparation Procedure

**Sample Pre-treatment:** Following oral fluid collection (as per manufacturer instructions), remove paddle, add internal

standard as required, add 0.5% aqueous ammonium hydroxide (10  $\mu$ L) to each collection device. Vortex mix. Dilute 250  $\mu$ L of the contents of the device with 250  $\mu$ L HPLC grade water

Vortex mix.

Format: ISOLUTE® SLE+ 1 mL sample volume columns, part number 820-0140-C

Sample Loading: Load 480 µL of the pre-treated oral fluid onto the column and apply a pulse of vacuum or

positive pressure (3–5 seconds) to initiate flow. Allow the sample to absorb for 5 minutes.

**Analyte Extraction** Apply ethyl acetate (3 mL) and allow to flow under gravity for 5 minutes. Apply a further

aliquot of ethyl acetate (3 mL) and allow to flow for another 5 minutes under gravity. Apply vacuum or positive pressure (5–10 seconds) to pull through any remaining extraction solvent.

Post Elution and Reconstitution: Before evaporation, add 50 mM HCl in methanol (100 µL) to each collection tube. This will

stabilize amphetamines, bath salts and ketamine, and minimise analyte losses during

evaporation.

Dry the extract in a stream of air or nitrogen using a SPE Dry (40 °C, 20 to 40 L/min) or

TurboVap (1.0 bar at 40 °C for 40 mins).

Upon dryness, reconstitute with 200 µL mobile phase A: mobile phase B (80:20, v:v)

### **UPLC** Conditions

Instrument: Waters ACQUITY UPLC

Column: ACE EXCEL 1.7 µm C18 prototype column (100 x 2.1 mm id)

Mobile Phase: A: 5 mM ammonium acetate (aq)

B: 5 mM ammonium acetate in methanol

Flow Rate: 0.3 mL/min

Table 2. Gradient conditions

| Time | % A | % В | Curve |
|------|-----|-----|-------|
| 0    | 90  | 10  | 1     |
| 10   | 10  | 90  | 6     |
| 11.9 | 10  | 90  | 6     |
| 13.4 | 90  | 10  | 1     |

Curve 1: Conditions in line initiated immediately once previous time

passed. i.e. 90:10 resumed at 11.9 minutes.

Curve 6: Linear Gradient

**Injection Volume:** 10 μL (partial loop with overfill):

Sample Temperature: 20 °C

Column Temperature: 40 °C



# Mass Spectrometry Conditions

**Instrument:** Premier XE triple quadrupole mass spectrometer equipped

with an electrospray interface for mass analysis.

**Desolvation Temperature:** 450 °C

**Ion Source Temperature:** 120 °C

Positive ions acquired in the multiple reaction monitoring (MRM) mode:

Table 3. MRM Conditions

| Compound              | MRM Transition | Cone<br>Voltage<br>(V) | Collision<br>Energy<br>(eV) |
|-----------------------|----------------|------------------------|-----------------------------|
| Amphetamine           | 136.0 > 118.9  | 16                     | 9                           |
| Amphetamine-D5        | 141.0 > 123.9  | 16                     | 9                           |
| Methamphetamine       | 150.0 > 90.9   | 22                     | 17                          |
| MDA                   | 180.1 > 105.0  | 16                     | 23                          |
| MDMA                  | 194.1 > 163.0  | 20                     | 13                          |
| MDEA                  | 208.2 > 163.0  | 22                     | 13                          |
| Hydromorphone         | 286.2 > 185.1  | 44                     | 29                          |
| Morphine              | 286.2 > 201.0  | 42                     | 25                          |
| Morphine-D3           | 289.2 > 201.0  | 42                     | 25                          |
| BZE                   | 290.1 > 168.0  | 30                     | 18                          |
| BZE-D3                | 293.1 > 171.0  | 30                     | 18                          |
| Oxymorphone           | 302.2 > 198.1  | 34                     | 37                          |
| Dihydrocodeine        | 302.2 > 199.1  | 42                     | 33                          |
| Oxycodone             | 316.2 > 241.2  | 34                     | 27                          |
| Mephedrone            | 178.1 > 160.0  | 35                     | 12                          |
| Norfentanyl           | 233.1 > 84.0   | 25                     | 19                          |
| 7-amino-flunitrazepam | 284.2 > 135.0  | 40                     | 27                          |
| 7-amino-clonazepam    | 286.2 > 121.0  | 40                     | 30                          |
| Hydrocodone           | 300.2 > 199.1  | 46                     | 33                          |
| Codeine               | 300.3 > 215.1  | 42                     | 25                          |
| 6-MAM                 | 328.2 > 165.1  | 44                     | 33                          |
| 6-MAM-D3              | 331.2 > 165.1  | 44                     | 33                          |
| Cocaine               | 304.2 > 182.0  | 30                     | 20                          |
| Norketamine           | 224.1 > 124.9  | 20                     | 23                          |
| EDDP                  | 278.2 > 234.2  | 26                     | 30                          |
| Zaleplone             | 306.2 > 264.2  | 40                     | 22                          |

| Compound              | MRM Transition | Cone<br>Voltage<br>(V) | Collision<br>Energy<br>(eV) |
|-----------------------|----------------|------------------------|-----------------------------|
| Zopiclone             | 389.2 > 245.1  | 20                     | 17                          |
| Norbuprenorphine      | 414.3 > 101.0  | 55                     | 42                          |
| Ketamine              | 238.1 > 124.9  | 25                     | 27                          |
| Nitrazepam            | 282.2 > 236.1  | 40                     | 25                          |
| Flunitrazepam         | 314.2 > 268.2  | 40                     | 25                          |
| Clonazepam            | 316.1 > 270.1  | 40                     | 25                          |
| a-OH-triazolam        | 359.1 > 331.1  | 45                     | 26                          |
| Oxazepam              | 287.2 > 241.0  | 30                     | 21                          |
| Estazolam             | 295.2 > 267.2  | 40                     | 24                          |
| Temazepam             | 301.1 > 255.1  | 30                     | 22                          |
| Zolpidem              | 308.2 > 235.1  | 45                     | 35                          |
| Alprazolam            | 309.2 > 281.2  | 40                     | 26                          |
| Methadone             | 310.2 > 265.2  | 26                     | 15                          |
| Lorazepam             | 321.1 > 275.1  | 30                     | 22                          |
| Bromazepam            | 316.1 > 182.1  | 40                     | 30                          |
| a-OH-alprazolam       | 325.2 > 297.1  | 40                     | 25                          |
| 2-OH-ethyl-flurazepam | 333.2 > 109.0  | 40                     | 27                          |
| Triazolam             | 343.0 > 308.1  | 45                     | 27                          |
| Nordiazepam           | 271.1 > 139.9  | 40                     | 28                          |
| Diazepam              | 285.2 > 154.0  | 40                     | 27                          |
| Diazepam-D5           | 290.2 > 154.0  | 40                     | 27                          |
| Midazolam             | 326.2 > 291.2  | 45                     | 29                          |
| Fentanyl              | 337.3 > 105.0  | 35                     | 40                          |
| Flurazepam            | 388.2 > 315.1  | 35                     | 23                          |
| Buprenorphine         | 468.3 > 101.0  | 55                     | 42                          |
| PCP                   | 244.2 > 159.9  | 20                     | 15                          |

### Results

Oral fluid mixed with buffer was spiked with 10 ng of analytes per loaded sample (n=7), equating to 125 ng/mL when extracting 480  $\mu$ L of loaded sample (or 80  $\mu$ L of raw oral fluid).

The % analyte recoveries for the various drug classes can be seen in Figures 2-4. RSD's ranged from 1.8-9.8%.



## **Amphetamines, Bath Salts and Opiates Recoveries**

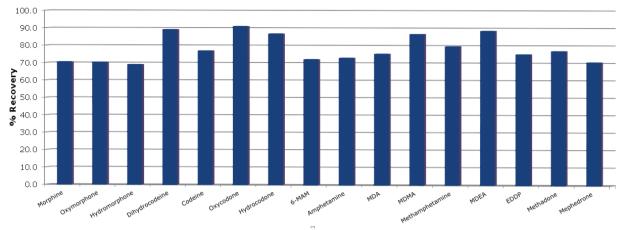



Figure 2. Recovery profile for amphetamines, bath salt and opiates from Intercept-collected oral fluid using ISOLUTE\* SLE+ 1 mL columns.

# **Benzodiazepines Recoveries**

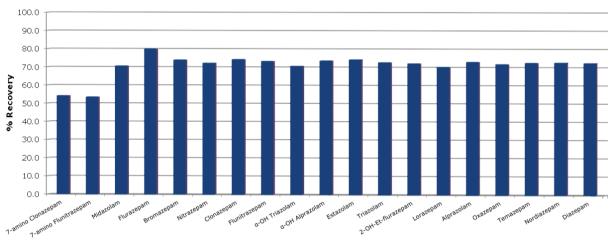



Figure 3. Recovery profile for benzodiazepines from Intercept-collected oral fluid using ISOLUTE® SLE+ 1 mL columns.

## **Other Drug Recoveries**

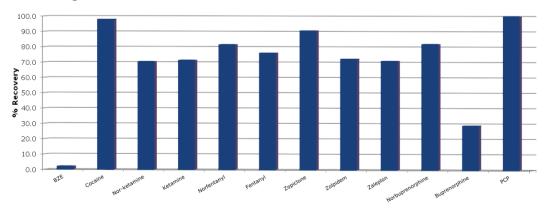



Figure 4. Recovery profile for multi-class analytes from Intercept-collected oral fluid using ISOLUTE® SLE+ 1 mL columns.



## Calibration Curves

Calibration curves were generated using oral fluid spiked at concentrations of 1–500 ng/mL, with internal standards spiked at 10 ng/mL for deuterated drug-metabolites and 100 ng/mL for deuterated drug-parents, prior to extraction on 1 mL capacity ISOLUTE\* SLE+ columns. **Figures 5–8**. demonstrate good coefficients for all analytes ( $r^2 > 0.99$ ). Quadratic function was observed at the top end of the calibration curve for many analytes (the excluded points seen in the figures below). Dilution of these samples was performed to improve linearity, using a reconstitution volume of 1 mL instead of 200  $\mu$ L.

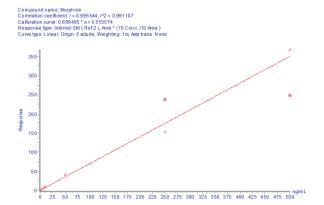



Figure 5. Calibration Curve for morphine using ISOLUTE® SLE+ 1 mL columns.

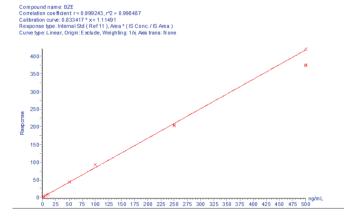



Figure 7. Calibration Curve for benzoylecgonine (BZE) using ISOLUTE $^{\circ}$  SLE+ 1 mL columns.

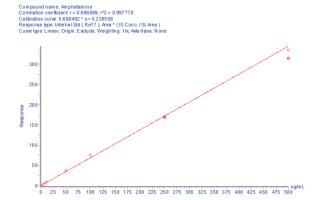



Figure 6. Calibration Curve for amphetamine using ISOLUTE® SLE+1 mL columns.

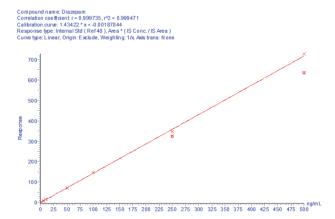



Figure 8. Calibration Curve for diazepam using  $ISOLUTE^{\circ}$  SLE+1 mL columns



**Table 4.** Estimated LOQ's based on S/N ratios from 1 ng/mL extracted samples are:

| Analyte               | Estimated LOQ (ng/mL) |
|-----------------------|-----------------------|
| Amphetamine           | 0.75                  |
| Methamphetamine       | 0.2                   |
| MDA                   | 1                     |
| MDMA                  | 0.2                   |
| MDEA                  | 0.4                   |
| Hydromorphone         | 0.2                   |
| Morphine              | 0.4                   |
| BZE*                  | 0.4                   |
| Oxymorphone           | 1                     |
| Dihydrocodeine        | 0.75                  |
| Oxycodone             | 0.75                  |
| Mephedrone            | 1                     |
| Norfentanyl           | 0.1                   |
| 7-amino-flunitrazepam | 0.2                   |
| 7-amino-clonazepam    | 0.75                  |
| Hydrocodone           | 0.75                  |
| Codeine               | 0.2                   |
| 6-MAM                 | 0.1                   |
| Cocaine               | 0.1                   |
| Norketamine           | 0.2                   |
| EDDP                  | 0.25                  |
| Zaleplone             | 0.1                   |
| Zopiclone             | 1                     |
| Norbuprenorphine      | 0.2                   |
|                       |                       |

| Analyte               | Estimated LOQ (ng/mL) |
|-----------------------|-----------------------|
| Ketamine              | 0.1                   |
| Nitrazepam            | 0.1                   |
| Flunitrazepam         | 0.1                   |
| Clonazepam            | 0.1                   |
| a-OH-triazolam        | 0.2                   |
| Oxazepam              | 1                     |
| Estazolam             | 0.1                   |
| Temazepam             | 0.1                   |
| Zolpidem              | 0.1                   |
| Alprazolam            | 0.1                   |
| Methadone             | 0.1                   |
| Lorazepam             | 0.75                  |
| Bromazepam            | 0.1                   |
| a-OH-alprazolam       | 0.1                   |
| 2-OH-ethyl-flurazepam | 0.5                   |
| Triazolam             | 0.1                   |
| Nordiazepam           | 0.1                   |
| Diazepam              | 0.1                   |
| Midazolam             | 0.1                   |
| Fentanyl              | 0.1                   |
| Flurazepam            | 0.1                   |
| Buprenorphine         | 1                     |
| PCP                   | 0.2                   |

## **Additional Notes**

\*Benzoylecgonine extraction recovery is low compared to samples fortified with the analyte after supported liquid extraction, however the LLOQ values in the table illustrate that this is not an obstacle to effective quantitation. If increased BZE recovery is required, dichloromethane may be used as an alternative extraction solvent.

#### **Extract Cleanliness**

Due to the nature of the buffers used in the oral fluid device and to avoid their co-extraction, an underload strategy was used i.e. 480 µL sample loaded on a 1 mL capacity column. We were unable to use 95/5 DCM/IPA as elution solvent (as per the equivalent urine assay) due to high levels of co-extracted interferences originating from the collection device buffer.

#### **Solution Preparation**

- 1. 5 mM ammonium acetate aq: Weigh 0.1927 g and dissolve in 500 mL UHPLC grade water.
- 2. 5 mM ammonium acetate in methanol: Weigh 0.1927 g and dissolve in 500 mL UHPLC grade methanol.
- 3. 0.5% aqueous ammonium hydroxide, used to modify pH prior to extraction, was prepared by the addition of 50  $\mu$ L of commercially available 28–32% grade to 9.95 mL UHPLC grade water.

#### **Blowdown Stability**

Amphetamines, bath salts and ketamines can suffer losses on evaporation when drying in the more volatile free base form. To overcome this effect we added 100  $\mu$ L of 50 mM HCl in MeOH to the collection plate/culture tubes to convert to the corresponding HCl salt forms.

50 mM HCl in methanol is prepared by adding 50  $\mu$ L concentrated hydrochloric acid to 11.95 mL HPLC grade methanol. The hydrochloric acid stock is commercially available ~12M.



# **Ordering Information**

| Part Number    | Description                                                     | Quantity |
|----------------|-----------------------------------------------------------------|----------|
| 820-0140-C     | ISOLUTE® SLE+ 1 mL Supported Liquid Extraction Column           | 30       |
| PPM-48         | Biotage® PRESSURE+ 48 Positive Pressure Manifold for Columns    | 1        |
| SD-9600-DHS-EU | Biotage $^{\circ}$ SPE Dry Sample Concentrator System 220/240 V | 1        |
| SD-9600-DHS-NA | Biotage $^{\circ}$ SPE Dry Sample Concentrator System 100/120 V | 1        |
| C103198        | TurboVap® LV, Evaporator 100/120V                               | 1        |
| C103199        | TurboVap® LV, Evaporator 220/240V                               | 1        |

#### **EUROPE**

Main Office: +46 18 565900
Toll Free: +800 18 565710
Fax: +46 18 591922
Order Tel: +46 18 565710
Order Fax: +46 18 565705
order@biotage.com
Support Tel: +46 18 56 59 11
Support Fax: + 46 18 56 57 11

## NORTH & LATIN AMERICA

Main Office: +1 704 654 4900
Toll Free: +1 800 446 4752
Fax: +1 704 654 4917
Order Tel: +1 704 654 4900
Order Fax: +1 434 296 8217
ordermailbox@biotage.com
Support Tel: +1 800 446 4752
Outside US: +1 704 654 4900
us-1-pointsupport@biotage.com

#### JAPAN

Tel: +81 3 5627 3123
Fax: +81 3 5627 3121
jp\_order@biotage.com
jp-1-pointsupport@biotage.com

#### CHINA

Tel: +86 21 2898 6655
Fax: +86 21 2898 6153
cn\_order@biotage.com
cn-1-pointsupport@biotage.com

To locate a distributor, please visit our website at www.biotage.com

#### Part Number: AN836

© 2015 Biotage. All rights reserved. No material may be reproduced or published without the written permission of Biotage.

Information in this document is subject to change without notice and does not represent any commitment from Biotage. E&OE. Product and company names mentioned herein may be trademarks or registered trademarks and/or service marks of their respective owners, and are used only for explanation and to the owners' benefit, without intent to infringe.

For more information visit www.biotage.com.

eu-1-pointsupport@biotage.com

